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SUMMARY 

The incompressible flow through a two-dimensional cascade is computed using the SIMPLE algorithm in a 
boundary-fitted co-ordinate system, With the standard staggered grid arrangement the numerical solution 
was found to allow localized pressure oscillations to persist adjacent to the periodic boundaries. These 
oscillations were found to be a consequence of the extended momentum control volumes which are required in 
this region of the cascade. Such control volumes may be removed by the use of appropriately non-staggered 
velocity storage locations, which are also desirable in the boundary-fitted system since the Cartesian velocity 
components are no longer related to the grid line orientations. However, this storage permits the 
propagation of global pressure oscillations, which were previously suppressed by the staggered grid 
arrangement. This paper attempts to define a solution procedure which uses non-staggered velocity locations 
and is able to eliminate the consequent global pressure oscillations. To achieve this aim, two forms of pressure 
correction scheme were considered. The first implemented the scheme proposed by Vanka et al. but was found 
to be inadequate in the open part of the cascade, whereas the second employed a modification of the scheme 
proposed by Rhie and Chow and was found to be successful in all regions of the flow. The results computed 
using this scheme were compared with the available experiment results. 
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INTRODUCTION 

The bladings for turbomachines are amongst the most complex geometries that a flow may 
encounter. Consequently, there are many benefits in the accurate computation of the flow 
phenomena occurring within such geometries. Much of the early numerical modelling of 
turbomachinery flows was based on the stream surface procedure proposed by Wu.' By using the 
notion of intersecting stream surfaces, this procedure was able to deliver numerical results within 
the scope of the existing computational resources. This procedure is still widely used at present; 
but, with the many recent advances in computing power, it is no longer an unreasonable task to 
model the flow by solving the primitive Navier-Stokes equations. Indeed it is argued' that the 
introduction of the stream surfaces is a limiting influence on the accuracy of the numerical results 
and that a Navier-Stokes procedure is required for greater accuracy. Amongst the techniques to 
adopt this approach are the procedures proposed by Denton3 and Moore and Moore.4 

The present two-dimensional study is performed with the aim of defining a numerical solution 
procedure which is suitable for computing internal turbomachinery flows which are highly three- 
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dimensional in nature. With the anticipated advantages of a Navier-Stokes procedure in mind, the 
present computer code was developed from the CHAMPION code of Pun and S ~ a l d i n g . ~  This 
code solves finite volume approximations to the primitive variable flow equations using the 
SIMPLE algorithm of Patankar and Spalding.6 

An important consideration in many solution algorithms is the choice of grid on which the flow 
equations are discretized. For the flow over a curved surface, such as a turbomachinery blade, the 
rigid axes of a Cartesian of cylindrical polar co-ordinate system impose a geometrical limitation on 
the solution. In particular, the application of the solid wall boundary conditions must involve 
interpolation between grid points not coincident with the boundaries. These limitations may 
adversely affect the accuracy of the solution, particularly in 'sensitive' areas of the flow, such as the 
leading edge regions. Consequently, it is anticipated that an improvement in accuracy may be 
achieved by the use of a boundary-fitted (curvilinear) co-ordinate system in which the geometrical 
limitations of the Cartesian or cylindrical systems may be removed and the wall boundary 
conditions can be applied more accurately. Such a co-ordinate system is adopted in the present 
study. 

In the formulation of the SIMPLE algorithm, a staggered grid is generally implemented to 
eliminate the propagation of unphysical pressure oscillations. However, in the present study it was 
found that the staggered grid arrangement allowed localized pressure oscillations to persist adjacent 
to the periodic boundaries. These oscillations were found 1 o be a consequence of the extended 
v-momentum control volumes which are required in this region as a result of the staggered storage 
locations. The need to use extended momentum control volumes may be removed by using non- 
staggered velocity locations. However, such storage allows pressure oscillations to develop in the 
whole of the flow domain, which outweighs the elimination of the localized oscillations. 
Nevertheless, there is a potentially more serious problem resulting from the use of staggered 
velocity locations in a boundary-fitted co-ordinate system. This is a consequence of the fact that the 
Cartesian velocity components (which remain the subject of the Navier-Stokes equation) are not 
related to the grid line orientations of the boundary-fitted system. In particular, the pressure 
gradients along the Cartesian axes are related to the pressure gradients along the boundary-fitted 
axes via the chain rule; the form of this relationship involving the grid line orientations. However, 
the staggering of the storage locations is directionally preferential, in that the staggered location for 
the u-velocity is designed to counter pressure oscillations in the x-direction of a Cartesian co- 
ordinate system, and similarly for the v-storage locations. Consequently, if the axes of the 
boundary-fitted system become highly skewed with the corresponding axes of the Cartesian 
system, the staggering of the storage locations has the incorrect directional preference and is no 
longer able to completely eliminate the pressure oscillations. This does not present a serious 
problem in the present boundary-fitted system; but, in the anticipated three-dimensional 
development of the code, such directional preference would pose serious difficulties in a centrifugal 
impeller, where there is a 90" curvature of the boundary-fitted axes. 

Two schemes have formerly been proposed7,* for eliminating the pressure oscillations which 
arise with such non-staggered velocity locations. As a preliminary to three-dimensional impeller 
flows, these two schemes are applied to the incompressible flow through the two-dimensional 
NGTE 10C4/30C50 blade cascade, for which low-speed experimental results are a~a i lab le .~  The 
aim of the present paper is, firstly, to compare the effectiveness of each scheme in eliminating the 
propagation of the pressure oscillations; and, secondly, to compare the flow computations of the 
most effective scheme with the experimental results for this cascade. 
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BOUNDARY-FITTED CO-ORDINATES 

Transformation of the j low equations 

The motion of a fluid is governed by a number of conservation equations (mass, momentum, 
etc.). In a (two-dimensional) Cartesian co-ordinate system these may be written in the form of a 
general transport equation for a dependent variable 6: 

where r is the effective diffusion coefficient, S(x,  y )  is the source term and there is a summation over 
the repeated index. 

If a co-ordinate transformation [ = <(x, y), q = q(x,  y )  is introduced, equation (1) may be 
rewritten in the (r,  q)  co-ordinates as 

where 

and S(<, q) is the source term in the (<, q)  co-ordinates. 
The metrics t,, etc. may be obtained from the derivatives x y ,  etc. using the relationships 

r, = Y,/J ,  5, = - x,/J,  (34 

r x  = - Y , / J ,  r y  = x , / J .  (3b) 

There are two similarities between equations (1) and (2a) that are worth noting: 

(i) Both equations are written in the strong conservation law form. This means that a solution 
algorithm formulated in a Cartesian co-ordinate system may be directly transferred to the 
curvilinear system. 

(ii) Thedependent variable 4is the samein bothequations. In particular, the transformedNavier- 
Stokes equations retain the Cartesian velocity components as the dependent variables. This is 
the semi-Cartesian form of the equations and is the most convenient form for the numerical 
computation. 

The relationship between the physical (x ,  y) domain and the transformed (g, q) domain is 
illustrated in Figure 1. 
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‘1 

Figure 1. Finite difference grid: (a) physical plane; (b) transformed plane 

Generation of the co-ordinate system 

The boundary-fitted grid is generated using the Laplace formulation of Thompson and 
Mastin.” In this method the curvilinear co-ordinates (< , v ] )  are generated as the solution of the 
elliptic equations 

The solutions x(<, v ] )  and y(<, v ] )  of equation (4) give the Cartesian co-ordinates for each grid 
point. The coefficients a, b, y are functions which depend on the grid line orientations, and the 
functions P and Q are exponential weighting functions which allow some input control of the grid 
point distribution. The resulting grid system for the NGTE 10C4/30C50 cascade is illustrated in 
Figure 2. 

METHOD OF SOLUTION 

General transport equation 

To obtain a discretization of the flow field, the governing conservation equations are integrated 
around small control volumes surrounding each grid point. The resulting finite difference 
approximation for the general transport equation (2a) may be written as 

(Pu4Arl): + (PV4A<),” = ( J W 1 4 @ v ] ) :  + (Jb7224,A5): + S A 5  Av] (5) 
where the ‘cross-diffusion’ terms involving g12 and g2’ are taken into the discretized source term S .  
The grid point notation and a typical control volume are shown in Figure 1. 

Equation ( 5 )  may be further manipulated in order to obtain a relation between 4p and the values 
of 4 at the surrounding grid points. This may be written as6 

(6) 4 4 P  = A N &  + AS4S + & 4 E  + A w 4 w  + s4> 
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Figure 2. Boundary-fitted co-ordinate system for the NGTE 10C4/30C50 cascade 

where the coefficients A involve the flow properties of diffusion and convection and the 
geometrical properties of the control cell. In the present elliptic scheme the diffusion terms are 
evaluated using a central difference and the convection terms using a first-order upwind difference. 

For two-dimensional incompressible flow, the flow field is completely determined by the values 
of u, u, p (and p). The values of u and u are determined as the solution of the momentum equations, 
which may be written as 

up = 1 Aaua + S" + (B"p, + Cup,,), 
a 

up = Aaua + S" + (B"p, + Cup,,), 
a 

where the CI summation is over the grid points E, W, N, S; 

and S",S" are the appropriate source terms with the pressure gradient terms subtracted. (The 
coefficients A,  arising on the LHS of equations (7a) and (7b) have been incorporated into the terms 
on the RHS of each of these equations.) 
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If the correct pressure field were known in advance, then the simultaneous solution of 
equations (7a) and (7b) would deliver the correct values of u a.nd u. However, the pressure values are 
not known and must be generated as part of the solution procedure. 

Pressure correction equation 

The solution of the pressure field is obtained using the SIMPLE procedure,6 in which a guessed 
pressure field is iteratively updated using a series of pressure corrections. To illustrate this 
procedure, suppose that with a pressure field p* the solution of the momentum equations yields u* 
and u*. Except in the converged solution u* and v* do not satisfy the continuity equation. To 
obtain satisfaction of both the momentum and continuity equations, suppose that the correct flow 
field (u, v ,p )  is obtained from the starred field by the addition of corrections (u', u', p' ) .  Thus 

u = u* + u', 

u = v* 4- ur, 

p = p* + pf. 

(84  

(8b) 

(8c) 
Since both u and u* satisfy the momentum equation (7a) with pressure fields p and p* 

respectively, the two forms of equation (7a) may be subtracted to give an equation relating uf to p' ;  

The first term on the RHS of this equation may be set to zero in the iterative part of the 
procedure, without influencing the converged solution.6 Thus the corrected u-velocity is given by 

u = U* + (B"p; + C"pb). (10a) 
Similarly, the corrected v-velocity is 

u = U* + (B"p; + Cup; ) .  

Hence the corrections to the curvilinear velocity components may be obtained from 
equations (2b) and (2c): 

U = U* + (Buyq - B " x , ) ~ ;  + (Cuyq - C'X,,)~;, 

I/ = I/* + (C"X< - C"y,x)p', + (B"x, - B"y<)p; ,  

(1 la) 

(1 1b) 
where U* and I/* are based on u* and u*. 

The last two terms of equations (1 la) and (1 lb) represent 'cross' pressure derivatives, which do 
not arise in a Cartesian co-ordinate system. However, since the pressure correction equation is to 
be solved using a successive line procedure, these terms may be set to zero. This does not influence 
the converged solution, in which p' = 0. Hence the corrections to the transformed velocity 
components are 

U = U* + Bpi,  ( 124 

where 
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Finally, substituting equations (12a) and (12b) into the continuity equation yields an equation 
for the pressure correction: 

(PBP; ArlE + (PCP:, At): + mp = 0, (13) 

where mp is the integrated mass source 

Using central differencing to obtain the pressure derivatives across the cell boundaries,6 
equation (1 3) becomes 

where the coefficients A involve B, C ,  p ,  etc. 

corrections may be evaluated. 
Equation (15) may be solved to obtain values for p', and hence the corresponding velocity 

Solution procedure 

The system of governing finite difference equations was solved using a successive line 
underrelaxation (SLUR) method, in which the Tridiagonal Matrix Algorithm (TDMA)5 was 
applied to each equation in turn. The flow equations were solved on successive cross-stream lines 
which marched from the inlet to the outlet of the cascade. The elliptic nature of the flow was 
accounted for by repeating complete sweeps of the flow field until a converged solution was 
obtained. 

The numerical solutions on each cross-stream line were obtained using the SIMPLE algorithm6 
adapted to the boundary-fitted co-ordinate system. In this procedure an estimated pressure field p* 
yields an intermediate solution (u* ,v* )  to the momentum equations. From these values the 
curvilinear velocity components are updated. If these velocities do not satisfy the mass 
conservation law, the required adjustments to the pressure and velocity fields are calculated from 
the pressure correction equation. This completes one cross-stream cycle of computation which is 
then repeated on the next cross-stream station. Finally, the viscosity values were updated, at the 
end of each complete sweep of the flow field, using the algebraic procedure of Baldwin and 
Lomax." This form of turbulence model was chosen in preference to the k--E model, since the 
algebraic equations are much quicker to evaluate than the two transport equations required in the 
k--E procedure. (This consideration is expected to be particularly important in the three- 
dimensional development of the present code.) 

VELOCITY STORAGE LOCATIONS 

In the formulation of the SIMPLE algorithm consideration must be given to the propagation of 
unphysical oscillations in the pressure field. In general, these may be eliminated with the use of a 
staggered grid. However, in the present study it was found that this formulation failed to deliver a 
pressure field which satisfied the periodicity condition on the open boundaries of the flow domain. 
In particular, it was found that on lines of 5 = constant the converged pressure values on either side 



394 B. L. LAPWORTH 

Figure 3. Lower boundary u-momentum control volume in a staggered grid formulation: --t, u, U storage location; T, u, V 
storage locations; 0 ,  pressure storage locations 

of the periodic boundary became highly skewed with each other and with the interior pressure 
values. However, the average of the two skewed values gave a value on the periodic boundary 
which was consistent (in terms of a smoothly varying field) with the interior pressure values. 
Further, on each ( = constant line the two skewed pressure values were consistent with the 
corresponding skewed values on the adjacent ( = constant lines. (Adjacent to the blade surfaces, this 
skewing of the pressure values did not occur.) 

This localized oscillation was found to be a consequence of the extended u-momentum control 
volumes that are required at the north and south boundaries of the solution domain. A typical 
control volume of this type is illustrated in Figure 3. For this cell the pressure gradient in the 
q-direction may be calculated independently of the pressure value which is stored in the interior of 
the cell. Hence these pressure values are only constrained to give a smoothly varying pressure 
field in the (-direction. In the q-direction the pressure field is constrained only by the pressure 
boundary condition. 

Where the flow is bounded by a solid wall, the pressure boundary condition is taken to be 
a p / a q  = 0. Hence the pressure values on the solid boundary are a direct extrapolation of the values 
adjacent to the wall, which suppresses any localized oscillation in the q-direction. However, where 
the flow is bounded by the periodicity condition, the pressure on the boundary is obtained from the 
average of the values on either side of the boundary. Hence the two pressure values may become 
highly skewed but, provided they give the correct average and are consistent in the <-direction, the 
velocity field will not be able to sense the oscillation. Since the solution of the pressure field is 
generated by a series of corrections, the pressure correction equation is also unable to sense the 
oscillation. 

It would,perhaps, be anticipated that theconsistency requirement in the (-direction wouldlimit the 
extent of any skewness of the pressure values. However, in the interior of the blade passage there is a 
pressure difference (loading) across the blade. Consequently, at the change in the boundary 
conditions (from periodic to solid wall) the consistency in the (-direction is not sufficient to suppress 
the localized oscillation. This is particularly so at the leading edge, where the flow accelerates rapidly 
to give a large loading; whereas, at the trailing edge there is an unloading of the blade (Kutta 
condition).Thus, as wasexperiencedin the present solution, thelocalized oscillation is more severe on 
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the periodic boundary upstream of the leading edge than it is on the boundary downstream of the 
trailing edge. 

This inadequacy of the staggered grid arrangement to deliver a periodicity-satisfying pressure 
field has previously been experienced in the two-dimensional cascade analysis of Mirzabozorg. 
In this case a Cartesian co-ordinate system was used, and to achieve the required pressure 
periodicity, Mirzabozorg proposed a joint SIMPLE/SIMPLER scheme in which the SIMPLER 
procedure13 was implemented outside the blade passage (to ‘force’ the periodicity) and the 
SIMPLE procedure was retained inside the blade passage. 

In the boundary-fitted co-ordinate system the staggering of the velocity locations is further made 
undesirable (as discussed in the Introduction to this study) because the Cartesian velocity 
components are no longer related to the grid line orientations of the co-ordinate system. 
Consequently, to resolve this problem in the boundary-fitted co-ordinates, a scheme is sought in 
which the velocity components may be stored on a set of non-staggered locations. In this case 
careful consideration must be given to the pressure correction scheme, since the non-staggered 
velocity locations no longer suppress the propagation of global pressure oscillations. Two schemes 
are considered for the elimination of these  oscillation^.^^^ The first continues to store the pressure 
on a set of staggered locations, whereas the second uses a completely non-staggered set of storage 
locations. 

STAGGERED PRESSURE LOCATIONS 

Two positions were considered for the pressure storage locations: 

(a) The velocity components are stored at the cell centres with the pressure stored 
at the cell corners 

The structure of this grid (illustrated in Figure 4(i)), by its nature, is not sufficient to eliminate the 
propagation of pressure oscillations. Such oscillations arise in the diagonal directions, since the 
pressure values are not known at the central points on the cell boundaries and must be obtained by 
interpolation between the values at the corner storage locations. 

In an attempt to eliminate these oscillations, the method proposed by Vanka et al.’ was 
implemented. In this method an amended procedure for generating the p’ values is used. Rather 
than solving equation (15) for p’, which would not eliminate the diagonal pressure oscillations, a 
cell-by-cell procedure is used in which it is supposed that at each pressure location all the 
surrounding values of p’ are zero (which is valid in the converged solution). Thus equation (15) 
reduces to 

p& = - mp/Ap. 

Equation (16) generates a pressure correction for each cell independently of the surrounding p’ 
values. The size of the p’ correction depends on the size of the continuity error mp. Thus to generate 
a converged solution with this procedure, the values of p‘ are used to update the velocity values, 
which allow a new continuity error to be generated. With the new mass sources the values of p‘ may 
be recalculated. The velocities are again corrected and the sequence is repeated (up to a maximum 
of 10 times, as suggested by Vanka et d7 )  until the continuity errors are acceptably small. 

The rationale of this procedure relies on the fact that the velocities are corrected using a 1-6 
gradient of p’ (whereas the p-gradients in the momentum equations are based on 2-6 differences). 
Thus by repeatedly calculating the mass sources the flow field is forced to ‘feel’ the 1-6 gradients. 
The only shortcoming in this procedure is that the velocity field can only sense the 1-6 variations in 
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(ii) 

Figure 4. Staggered pressure storage locations: (i) scheme (a); (ii) scheme: (b); 0 ,  velocity storage locations; x , pressure 
storage locations 

p’ and not in p .  Thus if an oscillatory pressure field arose during the course of the solution, this 
procedure would not be able to respond to it. The success of the method relies in restricting the 
development of an oscillatory pressure field from the outset of the iterative procedure. 

With this method implemented, it was found that the diagonal pressure oscillations persisted 
within the open channel, but within the interior of the blade passage the oscillations were 
successfully suppressed. (Some oscillations did occur inside the blade passage, but these decayed 
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rapidly and were restricted to the leading and trailing edge regions, where there was a border with 
the open passage. These were considered to be oscillations from the open boundary which were 
able to penetrate a small distanceinto the blade passage.)This dual nature ofthe pressure field appears 
to be a consequence of the dual boundary conditions within the cascade. It is anticipated that the 
pressure oscillations may be especially persistent in the leading and traihg edge regions, where the 
satisfaction of the continuity equation is most difficult to achieve. Further, it may be argued that the 
solid wall condition at the blade surfaces does not allow the pressure oscillations to ‘cross’ the 
boundary, and so any oscillations are suppressed; whereas the periodicity condition at the open 
boundaries allows the pressure oscillations the freedom to persist across the boundary, and 
consequently the oscillations are not suppressed in this region of the flow. 

Attempts to remove the pressure oscillations centred on smoothing the values of p’ in the open 
regions of the cascade. This operation is justified by the fact that in the converged solution the p’ 
values all approach zero; thus a small manipulation of the p‘ values during the iterative procedure 
ought not to influence the final solution. The values of p’ were smoothed according to the linear 
relationship 

(17)  smoothed = P;. - a b ; .  - 4(Ph + P91, 
where a represents the degree of smoothing (0 < ci < 1). 

Since the governing equations were solved using a line-by-line procedure, the p‘ values were only 
smoothed in the cross-stream (q)  direction. However, due to the diagonal nature of the pressure 
oscillations, this smoothing was not able to completely remove the oscillations. But, rather than 
attempting a more complicated procedure, involving some form of smoothing in the (-direction, an 
alternative method of staggering is implemented. The structure of this grid is designed to eliminate 
the oscillations in the 5-direction, while the above scheme is used to counter the oscillations in the 
II - d i r e c t i o n . 

(b) In the second grid the pressure storage locations are only staggered in the 5-direction 

Using this grid (illustrated in Figure 4(ii)) the pressure gradients in the <-direction are evaluated 
by a 1-6 difference, but in the ?-direction a 2-6 difference is still used. Thus this grid allows the 
possibility of pressure oscillations in the ?-direction, but in the (-direction the 1-6 difference 
suppresses any pressure oscillations, as in the original staggered grid. Hence smoothing in the 
q-direction ought to be more successful with this type of grid. This was indeed found to be the case. 
However, the optimum smoothing factor (a = 0.5) was required in the open passage in order to 
achieve a non-oscillatory pressure field. Within the blade passage, where the oscillations are 
restricted to the border regions with the open boundaries, a much smaller smoothing factor was 
required (a = 0.1). 

To obtain an indication of the validity of the results obtained using this procedure, the pressure 
coefficient along the blade surfaces was computed and compared with the available experimental 
values.’ These results are presented in Figure 5 and show an acceptable correspondence between 
the predicted and experimental values. 

The applicability of this method is felt to be limited for two reasons: firstly, because the method 
cannot respond to and correct any pressure oscillations that do persist in the solution; secondly, 
because the only way to eliminate the oscillations completely is to use a large amount of smoothing 
in the open channel. For this reason an alternative procedure was implemented, in which a 
completely non-staggered grid was used. 
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Figure 5. Comparison of the experimental pressure coefficient with the computed coefficient, using pressure correction 
equation (16): V, experimental,’ solid curve, calculated 

NON-STAGGERED PRESSURE LOCATIONS 

Rhie and Chow pressure correction scheme 

In order to eliminate the global pressure oscillations that arise from the use of a non-staggered 
grid, the method of Rhie and Chow’ was considered. The rationale of this procedure is based on the 
observation that when the mass fluxes are evaluated for the pressure correction equation, the 
values of u and u(or U and V )  used in the evaluation are the values on the cell boundaries rather 
than the values at the grid points. The usual procedure would be to obtain the boundary values by a 
simple averaging of the grid point values. Such an averaging would be partly responsible for the 
development of an oscillatory pressure field. Rhie and Chow’s modification is based on the 
supposition that if the velocity values at the cell boundaries were obtained by solving the 
momentum equations applied at the boundary points, then these momentum equations would 
contain pressure gradients which could be evaluated as the difference between neighbouring 
pressure locations. 

To illustrate this procedure, suppose the momentum equations (7a) and (7b) are substituted 
directly into equation (2b). This produces an equation for the U-velocity: 

dP* 
85 

U* = 6 + B-,  

where 0 contains all the terms arising from the above substitution except for the pressure gradient 
in the 5-direction. 

Consider the eastern boundary of a typical control volume (point e in Figure 1). In the 
application of the mass continuity law, the value of U at point e is required. If this value were 
obtained directly from the solution of equation (18) at point e, then the pressure gradient in this 
equation could be evaluated using a 1-6 difference between the pressure values at the grid points P 
and E. However, equation (18) can only be applied at points P and E, at which the pressure 



EXAMINATION OF PRESSURE OSCILLATIONS 399 

gradients are evaluated using a 2-6 difference. The value of U,X is then obtained from the average of 
U: and U i .  Using equation (18) in the evaluation of this average gives 

This equation may be re-expressed as 

0: =$(C, + CE) +Be& 
where the over-bar denotes results obtained using central differencing between the grid points. 

Approximating ce by the average of the values at P and E and rearranging equation (19b) gives 

f i e  = 0: - B e @ .  (19c) 
Finally, substituting this equation into equation (18) applied at the eastern boundary gives 

u: = u: + B e [  ( z)e dP* - p;]. 

Similar formulations are used for U z ,  V,*, V,*. 
As can be seen, the usual averaging to obtain the velocity values on the cell boundaries contains 

an additional term which represents the difference between the 1-6 and 2-6 difference schemes for 
the pressure gradient. Thus if an oscillatory pressure field were to arise, the magnitude of this term 
would be large and would act to remove the oscillation; whereas for the required non-oscillatory 
field the magnitude of this term remains small. 

In the current scheme the pressure correction equation was used in a slightly amended form of 
that proposed by Rhie and Chow. 

Current pressure correction scheme 

In the formulation of the pressure correction equation using equation (19d), it is observed that 
some of the additional terms that arise are in a form which allows the equation to be written in 
terms of p rather than p'. This does not alter the pressure correction equation, but merely re- 
expresses it. 

On substituting equation (19d) into equation (12a), the resulting correction to the U-velocity is 

u, = 0: + B e [  ( !$)e -4 +Be (g) e . 

The 1-6 gradients of p* and p' in this equation may be added to give a 1-6 gradient in p :  

ue= o.+s,($j e , 

with similar expressions for U,, V,, V,. 
Substituting these expressions into the continuity equation in the usual way gives 

P P  = 1 A,Ppa - mp, (21) 
a 

where m, is the integrated mass source based on the 'pseudo' velocities 6 and k This equation may 
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be solved to give both the updated pressure values and, consequently, the p’ values required to 
update the velocity values. 

It is important to remember that although equation (21) solves directly for p ,  the method is still 
SIMPLE-based rather than SIMPLER-based. This can be illustrated by considering an initial 
guess in which the velocities exactly satisfy continuity but the pressure field (incorrectly) has a 
constant value everywhere in the flow domain. In this case equation (21) would not adjust the 
pressure field until the solution of the momentum equations had delivered a flow field which did 
not satisfy continuity. Thus, in common with the SIMPLE procedure, the pressure correction in 
this scheme is ‘driven’ by errors in the mass conservation law. 

For the present cascade studies the pressure correction equation in terms of p is felt to have 
advantages over the corresponding equation in terms of p’. (The two equations are exactly the 
same except that one is a rearrangement of the other.) This formulation allows the periodicity 
condition to be implemented directly as a boundary condition for the pressure correction equation. 
With this formulation it was found that the pressure oscillations were eliminated in all regions of 
the cascade. 

RESULTS AND DISCUSSION O F  FLOW COMPUTATIONS 

The flow equations were discretized on a 50 x 20 grid, with 20 grid points placed in the spanwise 
direction and 20 points spaced along each blade surface. In each case considered approximately 
300 iterations were required in order to achieve a converged solution, taking about 1 h 30 min of 
CPU time on a Perkin Elmer 3210 computer. 

The solution procedure was used to evaluate four sets of salient flow data for the cascade. These 
were: the pressure coefficient along the blade surfaces; the variation of the deviation and deflection 
angles with incidence; and the variation of the deviation angle with the cascade solidity. 

Pressure coeflcient 

The blade pressure coefficient was computed for an inlet flow angle of 30°, with zero incidence 
and a cascade solidity of one. The comparison between the computed and experimental coefficients 
is shown in Figure 6. 

The calculated values do not quite achieve the same peak values near the leading edge as the 
experimental values. This is due to the ‘bluntness’ of the leading edge and the large flow gradients 
associated with this region. However, the calculated values do show the same qualitative shape as 
the experimental results, especially on the suction surface. The rapid fall in the calculated values of 
C, as the first (leading edge) grid point on each blade surface is approached is also felt to be due to 
the large flow gradients in the leading edge region, but also the computational grid was constructed 
with two grid points on each surface closer to the leading edge than the first experimental point. 
Disregarding these points (which is arguably valid since there are no experimental values in this 
region) would remove the rapid fall in the C ,  values and give a much better qualitative agreement 
with the experimental results. 

Along the remainder of the blade surface the calculated and experimental values are in good 
agreement. The calculated values approach the Kutta condition at the trailing edge, but do not 
achieve it exactly since the grid points are displaced from the trailing edge point on the blade. 

Variation of deviation and deflection with incidence 

The deviation angle is the difference between the outlet flow angle and the blade mean line angle 
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Figure 6. Comparison of the experimental pressure coefficient with the computed coefficient, using pressure correction 
equation (21): V, e~perimental ,~ solid curve, calculated 

at the trailing edge. This angle is a measure of how well the cascade 'guides' the flow and is 
dependent on such factors as the cascade geometry and the incidence angle of the flow. The 
existence of the deviation angle arises largely as a result of the boundary layer growth along the 
blade surfaces. (The deflection angle is the difference between the inlet and outlet flow angles.) 

Felix and Emery' reported experimental values for the variation of deflection and deviation with 
incidence angle. Numerical solutions were obtained with the proposed code for a range of 
incidence angles, and the computed deflection and deviation angles were evaluated. The 
comparisons of these results with the experimental results are shown in Figures 7 and 8 respectively. 

These results again show a good qualitative agreement with the experimental values, although 
the computed results are slightly displaced from the experimental results. In the case of the 
deflection angle, the calculated results show the same linear profile as the experimental results in 
the range - 8.0" < incidence < 4.0". The calculated values also show the same move away from the 
linear profile for the larger positive values of incidence angle, although the magnitude of the move 
is underachieved in the numerical results. A similar qualitative agreement is obtained when the 
deflection angle values are used to give the variation of deviation angle with incidence. 

Variation of deviation with solidity 

Following Wang et a1.,14 the computed variation of deviation angle with solidity, obtained using 
the proposed code, is compared with data from empirical correlations (which are derived from a 
number of experimental results) rather than with the results from an individual experimental study. 
There are two such correlations in common use; the first is Carter's rule and the second is the 
NASA correlation.'' 

For Carter's rule the deviation angle 6 is given by15 

6 = m$/JO,  (224 

where Q is the cascade solidity, $ is the camber angle and rn is a factor of proportionality which 
varies with the blade setting angle. 
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Figure 7. Comparitive variation of deflection angle with incidence angle for cascade solidity = l:V, experimental;' solid 
curve, calculated 
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Figure 8. Comparitive variation of deviation angle with incidence angle for cascade solidity = 1: V, e~perimental;~ solid 
curve, calculated 

For NASA's rule the deviation angle is given by15 

6 = 6, + m+/+b; (2W 
where 6,, m and b vary with the inlet flow angle. 

Numerical results were obtained for a range of values of solidity (all with an inlet flow angle of 
30" and zero incidence), and the comparison with the a.bove correlations is shown in Figure 9. 

The computed results show a much better agreement with the NASA correlation than with 
Carter's correlation. However, since the two correlations do not give exactly similar values for the 
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Figure 9. Comparitive variation of deviation angle with cascade solidity for blade setting angle = 15" and zero incidence 
angle: 1, NASA correlation;1s 2, calculated; 3, Carter's rule;15 V, zero-incidence experimental deviation from Figure 8. 

variation of deviation with solidity, the approximate agreement of the computed variation with the 
NASA correlation is felt to be acceptable. 

It is interesting to note that in Figures 7 and 8 the zero-incidence conditions correspond to the 
unity-solidity condition in Figure 9. To illustrate this, the experimental value of deviation at zero 
incidence, from Felix and Emery,' is also plotted in Figure 9. This experimental point is in very 
close agreement with the corresponding point from the NASA correlation, but not in such good 
agreement with that from Carter's correlation. Thus at this isolated point the closer agreement of 
the computed deviation with the NASA correlation is favourable. 

CONCLUSIONS 

A boundary-fitted co-ordinate system is used in the development of a solution procedure, based on 
the SIMPLE algorithm,6 in which the velocity locations are non-staggered. The consequent 
pressure oscillations are eliminated using a modified form of the scheme proposed by Rhie and 
Chow.8 

The solution procedure is used to calculate the low-speed flow through a two-dimensional 
cascade, using an algebraic turbulence model.'' Good overall agreement is obtained with the 
available experimental results' and correlations.' 
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